3.573 \(\int \frac{(a+b \cos (c+d x))^2}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=95 \[ \frac{2 \left (a^2+3 b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}-\frac{4 a b E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{4 a b \sin (c+d x)}{d \sqrt{\cos (c+d x)}} \]

[Out]

(-4*a*b*EllipticE[(c + d*x)/2, 2])/d + (2*(a^2 + 3*b^2)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^2*Sin[c + d*x]
)/(3*d*Cos[c + d*x]^(3/2)) + (4*a*b*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0949957, antiderivative size = 95, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {2789, 2636, 2639, 3012, 2641} \[ \frac{2 \left (a^2+3 b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}-\frac{4 a b E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{4 a b \sin (c+d x)}{d \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^2/Cos[c + d*x]^(5/2),x]

[Out]

(-4*a*b*EllipticE[(c + d*x)/2, 2])/d + (2*(a^2 + 3*b^2)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^2*Sin[c + d*x]
)/(3*d*Cos[c + d*x]^(3/2)) + (4*a*b*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

Rule 2789

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Dist[(2*c*d)/b
, Int[(b*Sin[e + f*x])^(m + 1), x], x] + Int[(b*Sin[e + f*x])^m*(c^2 + d^2*Sin[e + f*x]^2), x] /; FreeQ[{b, c,
 d, e, f, m}, x]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3012

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*Cos[e
+ f*x]*(b*Sin[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Dist[(A*(m + 2) + C*(m + 1))/(b^2*(m + 1)), Int[(b*Sin[e
+ f*x])^(m + 2), x], x] /; FreeQ[{b, e, f, A, C}, x] && LtQ[m, -1]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+b \cos (c+d x))^2}{\cos ^{\frac{5}{2}}(c+d x)} \, dx &=(2 a b) \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x)} \, dx+\int \frac{a^2+b^2 \cos ^2(c+d x)}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{2 a^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{4 a b \sin (c+d x)}{d \sqrt{\cos (c+d x)}}-(2 a b) \int \sqrt{\cos (c+d x)} \, dx-\frac{1}{3} \left (-a^2-3 b^2\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=-\frac{4 a b E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 \left (a^2+3 b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{4 a b \sin (c+d x)}{d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.565431, size = 73, normalized size = 0.77 \[ \frac{2 \left (\left (a^2+3 b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )-6 a b E\left (\left .\frac{1}{2} (c+d x)\right |2\right )+\frac{a \sin (c+d x) (a+6 b \cos (c+d x))}{\cos ^{\frac{3}{2}}(c+d x)}\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^2/Cos[c + d*x]^(5/2),x]

[Out]

(2*(-6*a*b*EllipticE[(c + d*x)/2, 2] + (a^2 + 3*b^2)*EllipticF[(c + d*x)/2, 2] + (a*(a + 6*b*Cos[c + d*x])*Sin
[c + d*x])/Cos[c + d*x]^(3/2)))/(3*d)

________________________________________________________________________________________

Maple [B]  time = 6.148, size = 514, normalized size = 5.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^2/cos(d*x+c)^(5/2),x)

[Out]

2/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)^2+1
)/sin(1/2*d*x+1/2*c)^3*(2*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*a^2*sin(1/2*d*x+1/2*c)^2+6*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*b^2*sin(1/2*d*x+1/2*c)^2+12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*
x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a*b*sin(1/2*d*x+1/2*c)^2-24*a*b*cos(1/2*d*x+1/2*c)*sin(1/2*
d*x+1/2*c)^4-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2
))*a^2-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b
^2-6*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b+2
*a^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+12*a*b*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)*(-2*sin(1/2*d*x+1
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2/cos(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^2/cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}{\cos \left (d x + c\right )^{\frac{5}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2/cos(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

integral((b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)/cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**2/cos(d*x+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2/cos(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^2/cos(d*x + c)^(5/2), x)